Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

نویسندگان

  • Bilal Haider
  • Matthew R. Krause
  • Alvaro Duque
  • Yuguo Yu
  • Jonathan Touryan
  • James A. Mazer
  • David A. McCormick
چکیده

During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RS(C)) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RS(C) neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse coding and decorrelation in primary visual cortex during natural vision.

Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual ...

متن کامل

Effects of visual deprivation on synaptic plasticity of visual cortex

  TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortic...

متن کامل

Multiscale functional imaging in V 1 and cortical correlates of apparent motion

In vivo intracellular electrophysiology offers the unique possibility of listening to the “synaptic rumour” of the cortical network captured by the recording electrode in a single V1 cell. The analysis of synaptic echoes evoked during sensory processing is used to reconstruct the distribution of input sources in visual space and in time. It allows to infer, in cortical space, the dynamics of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2010